Product Description
Who we are?
HangZhou XIHU (WEST LAKE) DIS. CARDANSHAFT CO;LTD has 15 years history.;When the general manager Mr.;Rony Du graduated from the university,;he always concentrated his attention on the research and development,;production and sales of the cardan shaft.;Mr.;Rony Du and his team started from scratch,;from 1 lathe and a very small order,;step by step to grow up.;He often said to his team”We will only do 1 thing well——to make the perfect cardan shaft”.;
HangZhou XIHU (WEST LAKE) DIS. CARDANSHAFT CO.;,;LTD was founded in 2005.;The registered capital is 8 million ,;covers an area of 15 acres,; has 30 existing staff.; The company specializing in the production of SWC,; SWP cross universal coupling and drum tooth coupling.;The company with factory is located in the beautiful coast of Tai Lake –Hudai (HangZhou Economic Development Zone Hudai Industrial Park);.;
In order to become China’s leading cardan shaft one-stop solution expert supplier .;XIHU (WEST LAKE) DIS. CARDANSHAFT independent research and development of SWC light,; medium,; short,; heavy Designs cardan shaft have reached the leading domestic level.;Products not only supporting domestic large and medium-sized customers,; but also exported to the United States,; India,; Vietnam,; Laos,; Ukraine,; Russia,; Germany,; Britain and other countries and areas.;In the past 15 years,; the company has accumulated a wealth of experience,; learn from foreign advanced technology,; and to absorb and use the universal axis has been improved several times,; so that the structure is maturing,; significantly improved performance.;
XIHU (WEST LAKE) DIS. belief:; “Continuous innovation,; optimize the structure,; perseverance” to create a high quality of outstanding cardan shaft manufacturer.;We always adhere to the ISO9001 quality control system,; from the details to start,; standardize the production process,; and to achieve processing equipment “specialization,; numerical control” rapid increase in product quality.;This Not only won the majority of customers reputation,; but also access to peer recognition.; We continue to strive to pursue:; “for customers to create the greatest value,; for the staff to build the best platform”,; will be CZPT to achieve customer and business mutually beneficial CZPT situation.;
Why choose us?
First,;select raw material carefully
The cross is the core component of cardan shaft,;so the selection of material is particularly critical.;Raw materials of the cross for light Duty Size and Medium Duty Size,;we choose the 20CrMnTi special gear steel bar from SHAGANG GROUP.;Being forged in 2500 ton friction press to ensure internal metallurgical structure,;inspecting the geometric dimensions of each part to meet the drawing requirements,;then transfer to machining,;the processes of milling,; turning,; quenching and grinding.;
The inspector will screen blank yoke head.;The porosity,; cracks,; slag,; etc.; do not meet the requirements of the casting foundry are all eliminated,;then doing physical and chemical analysis,; to see whether the ingredients meet the requirements,; unqualified re-elimination.;And then transferred to the quenching and tempering heat treatment,; once again check the hardness to see if meet the requirements,; qualified to be transferred to the machining process.; We control from the source of the material to ensure the supply of raw materials qualified rate of 99%.;
Second,;advanced production equipment
XIHU (WEST LAKE) DIS. Company introduced four-axis linkage machining center made in ZheJiang ,; milling the keyway and flange bolt hole of the flange yoke,; The once machine-shaping ensures that the symmetry of the keyway and the position of the bolt hole are less than 0.;02mm,;which greatly improves the installation accuracy of the flange,;the 4 axis milling and drilling center holes of the cross are integrated,;to ensure that the 4 shaft symmetry and verticality are less than 0.;02mm,;the process of the journal cross assembly service life can be increased by 30%,; and the speed at 1000 rpm above the cardan shaft running smoothly and super life is crucial to the operation.;
We use CNC machine to lathe flange yoke and welded yoke,;CNC machine can not only ensure the accuracy of the flange connection with the mouth,; but also improve the flange surface finish.;
5 meters automatic welding machine welding spline sleeve and tube,;welded yoke and tube.;With the welding CZPT swing mechanism,; automatic lifting mechanism,; adjustment mechanism and welding CZPT cooling system,; welding machine can realize multi ring continuous welding,; each coil current and voltage can be preset,; arc starting and stopping control PLC procedures,; reliable welding quality,; the weld bead is smooth and beautiful,; to control the welding process with fixed procedures,; greatly reducing the uncertainty of human during welding,; greatly improve the welding effect.;
High speed cardan shaft needs to do dynamic balance test before leaving the factory.;Unbalanced cardan shaft will produce excessive centrifugal force at high speed and reduce the service life of the bearing;the dynamic balance test can eliminate the uneven distribution of the casting weight and the mass distribution of the whole assembly;Through the experiment to achieve the design of the required balance quality,; improve the universal shaft service life.;In 2008 the company introduced 2 high-precision dynamic balance test bench,; the maximum speed can reach 4000 rev / min,; the balance of G0.;8 accuracy,; balance weight 2kg–1000kg.;
In order to make the paint standardization,; in 2009 the company bought 10 meters of clean paint room ,; the surface treatment of cardan shaft is more standardized,; paint fastness is more rugged,; staff’s working conditions improved,; exhaust of harmless treatment.;
Third,;Professional transport packaging
The packing of the export cardan shaft is all in the same way as the plywood wooden box,; and then it is firmly secured with the iron sheet,; so as to avoid the damage caused by the complicated situation in the long-distance transportation.; Meet the standard requirements of plywood boxes into Europe and other countries,; no matter where can successfully reach all the country’s ports.;
The following table for SWC Medium-sized Universal Shaft Parameters.;
Designs
Data and Sizes of SWC Series Universal Joint Couplings
pe | Design Data Item |
SWC160 | SWC180 | SWC200 | SWC225 | SWC250 | SWC265 | SWC285 | SWC315 | SWC350 | SWC390 | SWC440 | SWC490 | SWC550 | SWC620 |
A | L | 740 | 800 | 900 | 1000 | 1060 | 1120 | 1270 | 1390 | 1520 | 1530 | 1690 | 1850 | 2060 | 2280 |
LV | 100 | 100 | 120 | 140 | 140 | 140 | 140 | 140 | 150 | 170 | 190 | 190 | 240 | 250 | |
M(kg); | 65 | 83 | 115 | 152 | 219 | 260 | 311 | 432 | 610 | 804 | 1122 | 1468 | 2154 | 2830 | |
B | L | 480 | 530 | 590 | 640 | 730 | 790 | 840 | 930 | 100 | 1571 | 1130 | 1340 | 1400 | 1520 |
M(kg); | 44 | 60 | 85 | 110 | 160 | 180 | 226 | 320 | 440 | 590 | 820 | 1090 | 1560 | 2100 | |
C | L | 380 | 420 | 480 | 500 | 560 | 600 | 640 | 720 | 782 | 860 | 1040 | 1080 | 1220 | 1360 |
M(kg); | 35 | 48 | 66 | 90 | 130 | 160 | 189 | 270 | 355 | 510 | 780 | 970 | 1330 | 1865 | |
D | L | 520 | 580 | 620 | 690 | 760 | 810 | 860 | 970 | 1030 | 1120 | 1230 | 1360 | 1550 | 1720 |
M(kg); | 48 | 65 | 90 | 120 | 173 | 220 | 250 | 355 | 485 | 665 | 920 | 1240 | 1765 | 2390 | |
E | L | 800 | 850 | 940 | 1050 | 1120 | 1180 | 1320 | 1440 | 1550 | 1710 | 1880 | 2050 | 2310 | 2540 |
LV | 100 | 100 | 120 | 140 | 140 | 140 | 140 | 140 | 150 | 170 | 190 | 190 | 240 | 250 | |
M(kg); | 70 | 92 | 126 | 165 | 238 | 280 | 340 | 472 | 660 | 886 | 1230 | 1625 | 2368 | 3135 | |
Tn(kN·m); | 16 | 22.;4 | 31.;5 | 40 | 63 | 80 | 90 | 125 | 180 | 250 | 355 | 500 | 710 | 1000 | |
TF(kN·m); | 8 | 11.;2 | 16 | 20 | 31.;5 | 40 | 45 | 63 | 90 | 125 | 180 | 250 | 355 | 500 | |
Β(°); | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
D | 160 | 180 | 200 | 225 | 250 | 265 | 285 | 315 | 350 | 390 | 440 | 490 | 550 | 620 | |
Df | 160 | 180 | 200 | 225 | 250 | 265 | 285 | 315 | 350 | 3690 | 440 | 490 | 550 | 620 | |
D1 | 137 | 155 | 170 | 196 | 218 | 233 | 245 | 280 | 310 | 345 | 390 | 435 | 492 | 555 | |
D2(H9); | 100 | 105 | 120 | 135 | 150 | 160 | 170 | 185 | 210 | 235 | 255 | 275 | 320 | 380 | |
D3 | 108 | 114 | 140 | 159 | 168 | 180 | 194 | 219 | 245 | 273 | 299 | 325 | 402 | 426 | |
Lm | 95 | 105 | 110 | 125 | 140 | 150 | 160 | 180 | 195 | 215 | 260 | 270 | 305 | 340 | |
K | 16 | 17 | 18 | 20 | 25 | 25 | 27 | 32 | 35 | 40 | 42 | 47 | 50 | 55 | |
T | 4 | 5 | 5 | 5 | 6 | 6 | 7 | 8 | 8 | 8 | 10 | 12 | 12 | 12 | |
N | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | |
D | 15 | 17 | 17 | 17 | 19 | 19 | 21 | 23 | 23 | 25 | 28 | 31 | 31 | 38 | |
B | 20 | 24 | 32 | 32 | 40 | 40 | 40 | 40 | 50 | 70 | 80 | 90 | 100 | 100 | |
G | 6.;0 | 7.;0 | 9.;0 | 9.;0 | 12.;5 | 12.;5 | 12.;5 | 15.;0 | 16.;0 | 18.;0 | 20.;0 | 22.;5 | 22.;5 | 25 | |
MI(Kg); | 2.;57 | 3 | 3.;85 | 3.;85 | 5.;17 | 6 | 6.;75 | 8.;25 | 10.;6 | 13 | 18.;50 | 23.;75 | 29.;12 | 38.;08 | |
Size | M14 | M16 | M16 | M16 | M18 | M18 | M20 | M22 | M22 | M24 | M27 | M30 | M30 | M36 | |
Tightening torque(Nm); | 180 | 270 | 270 | 270 | 372 | 372 | 526 | 710 | 710 | 906 | 1340 | 1820 | 1820 | 3170 |
1.; Notations:;
L=Standard length,; or compressed length for designs with length compensation;
LV=Length compensation;
M=Weight;
Tn=Nominal torque(Yield torque 50% over Tn);;
TF=Fatigue torque,; I.; E.; Permissible torque as determined according to the fatigue strength
Under reversing loads;
Β=Maximum deflection angle;
MI=weight per 100mm tube
2.; Millimeters are used as measurement units except where noted;
3.; Please consult us for customizations regarding length,; length compensation and
Flange connections.;
(DIN or SAT etc.; );
How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings
There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
Involute splines
An effective side interference condition minimizes gear misalignment. When 2 splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by 5 mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to 50-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows 4 concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these 3 components.
Stiffness of coupling
The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using 2 different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these 2 methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.
Misalignment
To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
Wear and fatigue failure
The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the 3 factors. A failure mode is often defined as a non-linear distribution of stresses and strains.