Tag Archives: machine china manufacturer

China manufacturer 127mm Square Beam 11 Ton Low Bed Axle for Lowboy Truck Trailer a wheel and axle simple machine

Product Description

Product Description

Trailer Parts Axel Use for 3 Axle Fence Semi Trailer

 

1.12 Ton 13T 16T 20T 25T Standard size American  type axle for truck semi trailer.

2. Professional casting production line.

3. We can customize it according to your requirements.

4. The Logo can be customized.

5.  If you only buy spare parts, Our engineer can go to your factory to teaching your empolyee how to assembly the products !

Company Profile

ZheZheJiang angchi Automobile Technology Co., Ltd was established in 2571, engaged in the production of semi-trailer parts and truck trailers.The company has 3 million fixed assets and 180 skilled employees.

It has established an advanced workshop covering an area of 20,000 square meters. Always adhere to the “innovation, quality, dedication, mutual benefit” 8 word concept. The company has strong technical strength, sophisticated manufacturing equipment, professional production team, providing a solid backing for product innovation and quality assurance.

Based on the business philosophy of innovation, quality, survival, reputation and price,we are based in China’s trailer city.

Packaging & Shipping

Buying Xihu (West Lake) Dis.s for Semi Trailers

**You please send us your enquiry;
**We shall reply you with the quotation within 12 hours;
**We negotiate on the configuration that you need;
**Confirmation of the tech data → sign contract (P/I) → 30% deposit (or L/C issuing)→ production;
**Manufacturing process updated news → completing production;
**Balance payment → ex works → shipment → custom clearance → A/S service for 1 year.

FAQ

A. What are our advantages compared with other manufacturers

  • Competitive Price — We work as the leading dealers of various leading China Semi Trailers manufacturers/factories.From numerous comparison and feedback from clients, our price is more competitive than manufacturers/factories.
  • Quick Response— Our team is consisted of a group of diligent and enterprising people, working 24/7 to respond client inquiries and questions all the time. Most problems can be solved within 12 hours.
  • Fast delivery — Normally it will take more than 25-45 days for manufacturers/ factories to produce the ordered trailers, while we have a variety of resources, locally and nation widely, to receive trailers in timely manner. In 80% circumstance, we can have a 15-20 days delivery of regular trailers for our clients.
  • High Quality—–Every process of choose material ,welding ,sand blasting,painting with detailed inspection,accept 100% inspection during production and after production.

B. Which payment terms can we accept?

  • Normally we can work on T/T term or L/C term.
  • On T/T term, 30% down payment is required in advance, 70% balance shall be settled before delivery, or against the copy of original B/L for regular client.
  • On L/C term, normally need 30% down payment by T/T, 70% by L/C at sight. a 100% irrevocable L/C without “soft clauses” can be accepted sometimes. Please seek the advice from the individual sales manager whom you work with.

C. How long will our price be valid?

  • Price with long valid time — We are a tender and friendly supplier, never greedy on windfall profit. Basically, our price remains stable through the year. We only adjust our price based on 2 situations: The rate of USD:RMB varies significantly according to the international currency exchange rates. Manufacturers/factories adjusted the trailer price, because of the increasing labor cost and raw material cost.

D. What logistics ways we can work for shipment?

  • We can ship all trailer by various transportation tools.
  • For 90% of our shipment, we will go by sea, to all main continents such as South America, Middle East, Africa, Oceania etc, either by container or RoRo/Bulk Shipment.
  • For neighborhood countries of China, such as Russia, Tajikistan, Kazakhstan,Mongolia etc, we can ship trucks by road or railway.
  • For light spare parts in urgent demand, we can ship it by international courier service, such as DHL, TNT, UPS, or Fedex.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Axle Number: 2
Application: Trailer
Certification: ASTM, CE, DIN, ISO
Material: Steel
Type: Rear Axles
Customization:
Available

|

Customized Request

axle

Can you provide insights into the maintenance of axle bearings for smooth operation?

Maintaining axle bearings is essential for ensuring smooth operation, longevity, and optimal performance of a vehicle’s axle system. Here are some insights into the maintenance of axle bearings:

1. Regular Inspection:

Perform regular visual inspections of the axle bearings to check for any signs of wear, damage, or leaks. Look for indications such as excessive play, unusual noises, vibration, or leakage of grease. Inspections should be carried out as per the manufacturer’s recommended intervals or during routine maintenance checks.

2. Lubrication:

Adequate lubrication is crucial for the smooth operation of axle bearings. Follow the manufacturer’s guidelines for the type of lubricant to use and the recommended intervals for greasing. Over-greasing or under-greasing can lead to bearing damage or failure. Ensure that the proper amount of grease is applied to the bearings, and use a high-quality grease that is compatible with the axle bearing specifications.

3. Seal Inspection and Replacement:

Check the condition of the axle bearing seals regularly. The seals help to keep contaminants out and retain the lubricating grease within the bearing. If the seals are damaged, worn, or show signs of leakage, they should be replaced promptly to prevent dirt, water, or debris from entering the bearing assembly and causing damage.

4. Proper Installation:

During axle bearing replacement or installation, it is crucial to follow proper procedures to ensure correct seating and alignment. Improper installation can lead to premature bearing failure and other issues. Refer to the manufacturer’s instructions or consult a professional mechanic to ensure proper installation techniques are followed.

5. Load Capacity and Alignment:

Ensure that the axle bearings are properly sized and rated to handle the load capacity of the vehicle and the specific application. Overloading the bearings can lead to excessive wear and premature failure. Additionally, proper wheel alignment is important to prevent uneven bearing wear. Regularly check and adjust the wheel alignment if necessary.

6. Environmental Considerations:

Take into account the operating conditions and environment in which the vehicle is used. Extreme temperatures, exposure to water, dirt, or corrosive substances can affect the performance of axle bearings. In such cases, additional preventive measures may be necessary, such as more frequent inspections, cleaning, and lubrication.

7. Professional Maintenance:

If you are unsure about performing maintenance on axle bearings yourself or if you encounter complex issues, it is recommended to seek assistance from a qualified mechanic or technician who has experience with axle systems. They can provide expert advice, perform necessary repairs or replacements, and ensure proper maintenance of the axle bearings.

By following these maintenance insights, you can help ensure the smooth operation, longevity, and reliability of axle bearings, contributing to the overall performance and safety of the vehicle.

axle

Can you provide insights into the advancements in axle technology in recent years?

In recent years, there have been significant advancements in axle technology to enhance performance, efficiency, and safety in vehicles. Here are some insights into the key advancements:

  1. Lightweight Materials:
  2. One notable advancement is the use of lightweight materials in axle construction. Manufacturers have increasingly utilized materials such as aluminum alloys and high-strength steels to reduce the weight of axles without compromising strength and durability. Lighter axles contribute to improved fuel efficiency and overall vehicle performance.

  3. Electronic Differential:
  4. Electronic differentials, also known as eDiffs, have gained popularity in recent years. They utilize sensors, actuators, and control algorithms to monitor and distribute torque between the wheels more efficiently. Electronic differentials enhance traction, stability, and handling by actively managing torque distribution, especially in vehicles equipped with advanced stability control systems.

  5. Advanced Axle Bearings:
  6. Axle bearings have seen advancements in design and materials to reduce friction, improve efficiency, and enhance durability. For example, the use of roller bearings or tapered roller bearings has become more prevalent, offering reduced frictional losses and improved load-carrying capacity. Some manufacturers have also introduced sealed or maintenance-free bearings to minimize maintenance requirements.

  7. Electric Axles:
  8. With the rise of electric vehicles (EVs) and hybrid vehicles, electric axles have emerged as a significant technological advancement. Electric axles integrate electric motors, power electronics, and gear systems into the axle assembly. They eliminate the need for traditional drivetrain components, simplify vehicle packaging, and offer benefits such as instant torque, regenerative braking, and improved energy efficiency.

  9. Active Suspension Integration:
  10. Advancements in axle technology have facilitated the integration of active suspension systems into axle designs. Active suspension systems use sensors, actuators, and control algorithms to adjust the suspension characteristics in real-time, providing improved ride comfort, handling, and stability. Axles with integrated active suspension components offer more precise control over vehicle dynamics.

  11. Improved Sealing and Lubrication:
  12. Axles have seen advancements in sealing and lubrication technologies to enhance durability and minimize maintenance requirements. Improved sealing systems help prevent contamination and retain lubricants, reducing the risk of premature wear or damage. Enhanced lubrication systems with better heat dissipation and reduced frictional losses contribute to improved efficiency and longevity.

  13. Autonomous Vehicle Integration:
  14. The development of autonomous vehicles has spurred advancements in axle technology. Axles are being designed to accommodate the integration of sensors, actuators, and communication systems necessary for autonomous driving. These advancements enable seamless integration with advanced driver-assistance systems (ADAS) and autonomous driving features, ensuring optimal performance and safety.

It’s important to note that the specific advancements in axle technology can vary across different vehicle manufacturers and models. Furthermore, ongoing research and development efforts continue to drive further innovations in axle design, materials, and functionalities.

For the most up-to-date and detailed information on axle technology advancements, it is advisable to consult automotive manufacturers, industry publications, and reputable sources specializing in automotive technology.

axle

What are the signs of a worn or failing axle, and how can I troubleshoot axle issues?

Identifying the signs of a worn or failing axle is important for maintaining the safety and functionality of your vehicle. Here are some common signs to look out for and troubleshooting steps you can take to diagnose potential axle issues:

  1. Unusual Noises:
  2. If you hear clunking, clicking, or grinding noises coming from the area around the wheels, it could indicate a problem with the axle. These noises may occur during acceleration, deceleration, or when turning. Troubleshoot by listening carefully to the location and timing of the noises to help pinpoint the affected axle.

  3. Vibrations:
  4. A worn or failing axle can cause vibrations that can be felt through the steering wheel, floorboard, or seat. These vibrations may occur at certain speeds or during specific driving conditions. If you experience unusual vibrations, it’s important to investigate the cause, as it could be related to axle problems.

  5. Uneven Tire Wear:
  6. Inspect your tires for uneven wear patterns. Excessive wear on the inner or outer edges of the tires can be an indication of axle issues. Misaligned or damaged axles can cause the tires to tilt, leading to uneven tire wear. Regularly check your tires for signs of wear and take note of any abnormalities.

  7. Difficulty Steering:
  8. A worn or damaged axle can affect steering performance. If you experience difficulty in steering, such as stiffness, looseness, or a feeling of the vehicle pulling to one side, it may be due to axle problems. Pay attention to any changes in steering responsiveness and address them promptly.

  9. Visible Damage or Leaks:
  10. Inspect the axles visually for any signs of damage or leaks. Look for cracks, bends, or visible fluid leaks around the axle boots or seals. Damaged or leaking axles can lead to lubrication loss and accelerated wear. If you notice any visible issues, it’s important to have them inspected and repaired by a qualified mechanic.

  11. Professional Inspection:
  12. If you suspect axle issues but are unsure about the exact cause, it’s advisable to seek a professional inspection. A qualified mechanic can perform a thorough examination of the axles, suspension components, and related systems. They have the expertise and tools to diagnose axle problems accurately and recommend the appropriate repairs.

It’s important to note that troubleshooting axle issues can sometimes be challenging, as symptoms may overlap with other mechanical problems. If you’re uncertain about diagnosing or repairing axle issues on your own, it’s recommended to consult a professional mechanic. They can provide a proper diagnosis, ensure the correct repairs are performed, and help maintain the safety and performance of your vehicle.

China manufacturer 127mm Square Beam 11 Ton Low Bed Axle for Lowboy Truck Trailer   a wheel and axle simple machineChina manufacturer 127mm Square Beam 11 Ton Low Bed Axle for Lowboy Truck Trailer   a wheel and axle simple machine
editor by CX 2024-02-05

China manufacturer OEM/ODM Pto Drive Propeller Shaft for Farm Machine and Agriculture Machine wholesaler

Product Description

OEM Propeller Shaft for Farm Machine and Agriculture Machine

1. Power or torque related to alternating load you require.  

2. Cross journal(Universal joint) size which decides torque of a PTO Shaft:  

3 Closed overall length (or cross to cross) of a PTO shaft.  

4 Tubes or Pipes  

FAQ

1. Q: Are your products forged or cast?

    A: All of our products are forged.

2. Q: Do you have a CE certificate?
    A: Yes, we are CE qualified.
3. Q: What’s the horse power of the pto shaft are available?
    A: We provide a full range of pto shaft, ranging from 16HP-200HP.
4. Q: How many splined specification do you have ?
    A: We produce 1 1/8″-Z6, 1 3/8″-Z6, 1 3/4″-Z6, 1 3/8″- Z21, 1 3/4″-Z20, 8X42X48X8 and 8X32X38X6 splines.
5. Q: How about the warranty?
    A: We guarantee 1 year warranty. With quality problems, we will send you the new products for free within next shipment.
6. Q: What’s your payment terms?
    A: T/T, L/C, D/A, D/P….
7. Q: What is the delivery time?
    A: 30 days after receiving your advanced deposit.
8. Q: What’s your MOQ?
    A: 50 PCS for each type.

 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China manufacturer OEM/ODM Pto Drive Propeller Shaft for Farm Machine and Agriculture Machine     wholesaler China manufacturer OEM/ODM Pto Drive Propeller Shaft for Farm Machine and Agriculture Machine     wholesaler

China Hot selling Hot Sale Discount 50HP 70HP China Agriculture Machine Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe near me supplier

Product Description

.

1. Our wheel tractors rank first in sales in China.

2. 20 years of export experience.

3. 30 years tractor production engineer.


 

Model                                 TK704
Machine parameters Type 4×4
Rated Traction( KN) 16.2
PTO Max Power (KW) 43.8
Dimensions(mm) 3560×1650×2350
Wheelbase(mm) 1965

Track(mm)

Front wheel(mm) 1150
Rear wheel(mm) 1200-1360
 Ground clearance(mm) Minimum ground clearance(mm) 330
  Use unilateral braking 2.85±0.20
  Not unilateral braking 3.15±0.30
Minimum use quality 1660
Gearbox 8F+8R Shuttle Shift
Steering System  hydraulic steering gear
Drive Train Clutch double acting clutch
Working equipment Maximum lifting force at 610mm(KN) ≥10
Suspension mechanism Three-piont suspension type 1
PTO shaft PTO Spedd(r/min) 540/760(option: 540/1000)
Tire Front wheel specifications 6.00-16/6.5-16/7.5-16
Rear wheel specifications 9.5-24/11.2-24/12.4-24
Engine Type Inline, 4 stroke, Water cooled
Cylinder 4

Optional

Cabin AC/Heater
Roll bar
Canopy

Perfusion volume

Radiater(L) 10
Fuel tank(L) 29
Engine oil pan(L) 5
Driveline oil (L) 20
Lifter(L) 9.5
This parameter table is for reference only, everything is based on actual products
 

50HP-70HP(8F+8R) Series Tractors
*Flat floor,8+8 shuttle shift,side-mounted gear,convenient and flexible operation, multiple gear selections, and strong adaptability.
*Fully sealed front axle, with good sealing performance, preventing mud and water ingress, both flood and drought. *Achieve a narrow wheelbase, adjustable from 0.96-1.2 meters, and a wider range of adaptation. *Double clutch,separate operation of driving and power output, more suitable for sowing and receiving use. *Rear-mounted, central-mounted cylinder front axle,the left and right turning radius are the same, flexible and convenient. *Standard configuration with 2 sets of 2 way valves to meet the needs of different agricultural machinery. *Optional air brake device to meet the needs of road transportation.

Engine
* 4 cylinder turbocharged diesel engine, Powerful and easy to maintain.
* Could choose china famous brand engine, Xichai, YTO, Xinchai etc.
* Low fuel consumption and large torque reserve.
* Cooling system effectively reduce engine temperature.

Cabin inside
* The 4-post cabin allows the driver to have a wider field of vision.
* Flat floor design is free and comfortable.
* Steering
wheel with direction ball makes it easier to operate.
* Shuttle shift makes forward and backward clear at a glance.
* Shock absorption seats, driving on bumpy roads will not have too much shock.

Lifter
* Hydraulic lifter, greater lifting force, the downward pressure is more powerful, which can better press agricultural machinery into the soil.
* 2 groups hydraulic output, can be connected to agricultural machinery using hydraulic oil.
* 3-point lift power 1050kg.
 

The Benefits of Spline Couplings for Disc Brake Mounting Interfaces

Spline couplings are commonly used for securing disc brake mounting interfaces. Spline couplings are often used in high-performance vehicles, aeronautics, and many other applications. However, the mechanical benefits of splines are not immediately obvious. Listed below are the benefits of spline couplings. We’ll discuss what these advantages mean for you. Read on to discover how these couplings work.

Disc brake mounting interfaces are splined

There are 2 common disc brake mounting interfaces – splined and six-bolt. Splined rotors fit on splined hubs; six-bolt rotors will need an adapter to fit on six-bolt hubs. The six-bolt method is easier to maintain and may be preferred by many cyclists. If you’re thinking of installing a disc brake system, it is important to know how to choose the right splined and center lock interfaces.
splineshaft

Aerospace applications

The splines used for spline coupling in aircraft are highly complex. While some previous researches have addressed the design of splines, few publications have tackled the problem of misaligned spline coupling. Nevertheless, the accurate results we obtained were obtained using dedicated simulation tools, which are not commercially available. Nevertheless, such tools can provide a useful reference for our approach. It would be beneficial if designers could use simple tools for evaluating contact pressure peaks. Our analytical approach makes it possible to find answers to such questions.
The design of a spline coupling for aerospace applications must be accurate to minimize weight and prevent failure mechanisms. In addition to weight reduction, it is necessary to minimize fretting fatigue. The pressure distribution on the spline coupling teeth is a significant factor in determining its fretting fatigue. Therefore, we use analytical and experimental methods to examine the contact pressure distribution in the axial direction of spline couplings.
The teeth of a spline coupling can be categorized by the type of engagement they provide. This study investigates the position of resultant contact forces in the teeth of a spline coupling when applied to pitch diameter. Using FEM models, numerical results are generated for nominal and parallel offset misalignments. The axial tooth profile determines the behavior of the coupling component and its ability to resist wear. Angular misalignment is also a concern, causing misalignment.
In order to assess wear damage of a spline coupling, we must take into consideration the impact of fretting on the components. This wear is caused by relative motion between the teeth that engage them. The misalignment may be caused by vibrations, cyclical tooth deflection, or angular misalignment. The result of this analysis may help designers improve their spline coupling designs and develop improved performance.
CZPT polyimide, an abrasion-resistant polymer, is a popular choice for high-temperature spline couplings. This material reduces friction and wear, provides a low friction surface, and has a low wear rate. Furthermore, it offers up to 50 times the life of metal on metal spline connections. For these reasons, it is important to choose the right material for your spline coupling.
splineshaft

High-performance vehicles

A spline coupler is a device used to connect splined shafts. A typical spline coupler resembles a short pipe with splines on either end. There are 2 basic types of spline coupling: single and dual spline. One type attaches to a drive shaft, while the other attaches to the gearbox. While spline couplings are typically used in racing, they’re also used for performance problems.
The key challenge in spline couplings is to determine the optimal dimension of spline joints. This is difficult because no commercial codes allow the simulation of misaligned joints, which can destroy components. This article presents analytical approaches to estimating contact pressures in spline connections. The results are comparable with numerical approaches but require special codes to accurately model the coupling operation. This research highlights several important issues and aims to make the application of spline couplings in high-performance vehicles easier.
The stiffness of spline assemblies can be calculated using tooth-like structures. Such splines can be incorporated into the spline joint to produce global stiffness for torsional vibration analysis. Bearing reactions are calculated for a certain level of misalignment. This information can be used to design bearing dimensions and correct misalignment. There are 3 types of spline couplings.
Major diameter fit splines are made with tightly controlled outside diameters. This close fit provides concentricity transfer from the male to the female spline. The teeth of the male spline usually have chamfered tips and clearance with fillet radii. These splines are often manufactured from billet steel or aluminum. These materials are renowned for their strength and uniform grain created by the forging process. ANSI and DIN design manuals define classes of fit.
splineshaft

Disc brake mounting interfaces

A spline coupling for disc brake mounting interfaces is a type of hub-to-brake-disc mount. It is a highly durable coupling mechanism that reduces heat transfer from the disc to the axle hub. The mounting arrangement also isolates the axle hub from direct contact with the disc. It is also designed to minimize the amount of vehicle downtime and maintenance required to maintain proper alignment.
Disc brakes typically have substantial metal-to-metal contact with axle hub splines. The discs are held in place on the hub by intermediate inserts. This metal-to-metal contact also aids in the transfer of brake heat from the brake disc to the axle hub. Spline coupling for disc brake mounting interfaces comprises a mounting ring that is either a threaded or non-threaded spline.
During drag brake experiments, perforated friction blocks filled with various additive materials are introduced. The materials included include Cu-based powder metallurgy material, a composite material, and a Mn-Cu damping alloy. The filling material affects the braking interface’s wear behavior and friction-induced vibration characteristics. Different filling materials produce different types of wear debris and have different wear evolutions. They also differ in their surface morphology.
Disc brake couplings are usually made of 2 different types. The plain and HD versions are interchangeable. The plain version is the simplest to install, while the HD version has multiple components. The two-piece couplings are often installed at the same time, but with different mounting interfaces. You should make sure to purchase the appropriate coupling for your vehicle. These interfaces are a vital component of your vehicle and must be installed correctly for proper operation.
Disc brakes use disc-to-hub elements that help locate the forces and displace them to the rim. These elements are typically made of stainless steel, which increases the cost of manufacturing the disc brake mounting interface. Despite their benefits, however, the high braking force loads they endure are hard on the materials. Moreover, excessive heat transferred to the intermediate elements can adversely affect the fatigue life and long-term strength of the brake system.

China Hot selling Hot Sale Discount 50HP 70HP China Agriculture Machine Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe     near me supplier China Hot selling Hot Sale Discount 50HP 70HP China Agriculture Machine Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe     near me supplier

China Standard Hot Sale Discount 50HP 70HP China Agricultural Machine Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe near me manufacturer

Product Description

.

1. Our wheel tractors rank first in sales in China.

2. 20 years of export experience.

3. 30 years tractor production engineer.


 

Model                                 TK704
Machine parameters Type 4×4
Rated Traction( KN) 16.2
PTO Max Power (KW) 43.8
Dimensions(mm) 3560×1650×2350
Wheelbase(mm) 1965

Track(mm)

Front wheel(mm) 1150
Rear wheel(mm) 1200-1360
 Ground clearance(mm) Minimum ground clearance(mm) 330
  Use unilateral braking 2.85±0.20
  Not unilateral braking 3.15±0.30
Minimum use quality 1660
Gearbox 8F+8R Shuttle Shift
Steering System  hydraulic steering gear
Drive Train Clutch double acting clutch
Working equipment Maximum lifting force at 610mm(KN) ≥10
Suspension mechanism Three-piont suspension type 1
PTO shaft PTO Spedd(r/min) 540/760(option: 540/1000)
Tire Front wheel specifications 6.00-16/6.5-16/7.5-16
Rear wheel specifications 9.5-24/11.2-24/12.4-24
Engine Type Inline, 4 stroke, Water cooled
Cylinder 4

Optional

Cabin AC/Heater
Roll bar
Canopy

Perfusion volume

Radiater(L) 10
Fuel tank(L) 29
Engine oil pan(L) 5
Driveline oil (L) 20
Lifter(L) 9.5
This parameter table is for reference only, everything is based on actual products
 

50HP-70HP(8F+8R) Series Tractors
*Flat floor,8+8 shuttle shift,side-mounted gear,convenient and flexible operation, multiple gear selections, and strong adaptability.
*Fully sealed front axle, with good sealing performance, preventing mud and water ingress, both flood and drought. *Achieve a narrow wheelbase, adjustable from 0.96-1.2 meters, and a wider range of adaptation. *Double clutch,separate operation of driving and power output, more suitable for sowing and receiving use. *Rear-mounted, central-mounted cylinder front axle,the left and right turning radius are the same, flexible and convenient. *Standard configuration with 2 sets of 2 way valves to meet the needs of different agricultural machinery. *Optional air brake device to meet the needs of road transportation.

Engine
* 4 cylinder turbocharged diesel engine, Powerful and easy to maintain.
* Could choose china famous brand engine, Xichai, YTO, Xinchai etc.
* Low fuel consumption and large torque reserve.
* Cooling system effectively reduce engine temperature.

Cabin inside
* The 4-post cabin allows the driver to have a wider field of vision.
* Flat floor design is free and comfortable.
* Steering
wheel with direction ball makes it easier to operate.
* Shuttle shift makes forward and backward clear at a glance.
* Shock absorption seats, driving on bumpy roads will not have too much shock.

Lifter
* Hydraulic lifter, greater lifting force, the downward pressure is more powerful, which can better press agricultural machinery into the soil.
* 2 groups hydraulic output, can be connected to agricultural machinery using hydraulic oil.
* 3-point lift power 1050kg.
 

Analytical Approaches to Estimating Contact Pressures in Spline Couplings

A spline coupling is a type of mechanical connection between 2 rotating shafts. It consists of 2 parts – a coupler and a coupling. Both parts have teeth which engage and transfer loads. However, spline couplings are typically over-dimensioned, which makes them susceptible to fatigue and static behavior. Wear phenomena can also cause the coupling to fail. For this reason, proper spline coupling design is essential for achieving optimum performance.
splineshaft

Modeling a spline coupling

Spline couplings are becoming increasingly popular in the aerospace industry, but they operate in a slightly misaligned state, causing both vibrations and damage to the contact surfaces. To solve this problem, this article offers analytical approaches for estimating the contact pressures in a spline coupling. Specifically, this article compares analytical approaches with pure numerical approaches to demonstrate the benefits of an analytical approach.
To model a spline coupling, first you create the knowledge base for the spline coupling. The knowledge base includes a large number of possible specification values, which are related to each other. If you modify 1 specification, it may lead to a warning for violating another. To make the design valid, you must create a spline coupling model that meets the specified specification values.
After you have modeled the geometry, you must enter the contact pressures of the 2 spline couplings. Then, you need to determine the position of the pitch circle of the spline. In Figure 2, the centre of the male coupling is superposed to that of the female spline. Then, you need to make sure that the alignment meshing distance of the 2 splines is the same.
Once you have the data you need to create a spline coupling model, you can begin by entering the specifications for the interface design. Once you have this data, you need to choose whether to optimize the internal spline or the external spline. You’ll also need to specify the tooth friction coefficient, which is used to determine the stresses in the spline coupling model 20. You should also enter the pilot clearance, which is the clearance between the tip 186 of a tooth 32 on 1 spline and the feature on the mating spline.
After you have entered the desired specifications for the external spline, you can enter the parameters for the internal spline. For example, you can enter the outer diameter limit 154 of the major snap 54 and the minor snap 56 of the internal spline. The values of these parameters are displayed in color-coded boxes on the Spline Inputs and Configuration GUI screen 80. Once the parameters are entered, you’ll be presented with a geometric representation of the spline coupling model 20.

Creating a spline coupling model 20

The spline coupling model 20 is created by a product model software program 10. The software validates the spline coupling model against a knowledge base of configuration-dependent specification constraints and relationships. This report is then input to the ANSYS stress analyzer program. It lists the spline coupling model 20’s geometric configurations and specification values for each feature. The spline coupling model 20 is automatically recreated every time the configuration or performance specifications of the spline coupling model 20 are modified.
The spline coupling model 20 can be configured using the product model software program 10. A user specifies the axial length of the spline stack, which may be zero, or a fixed length. The user also enters a radial mating face 148, if any, and selects a pilot clearance specification value of 14.5 degrees or 30 degrees.
A user can then use the mouse 110 to modify the spline coupling model 20. The spline coupling knowledge base contains a large number of possible specification values and the spline coupling design rule. If the user tries to change a spline coupling model, the model will show a warning about a violation of another specification. In some cases, the modification may invalidate the design.
In the spline coupling model 20, the user enters additional performance requirement specifications. The user chooses the locations where maximum torque is transferred for the internal and external splines 38 and 40. The maximum torque transfer location is determined by the attachment configuration of the hardware to the shafts. Once this is selected, the user can click “Next” to save the model. A preview of the spline coupling model 20 is displayed.
The model 20 is a representation of a spline coupling. The spline specifications are entered in the order and arrangement as specified on the spline coupling model 20 GUI screen. Once the spline coupling specifications are entered, the product model software program 10 will incorporate them into the spline coupling model 20. This is the last step in spline coupling model creation.
splineshaft

Analysing a spline coupling model 20

An analysis of a spline coupling model consists of inputting its configuration and performance specifications. These specifications may be generated from another computer program. The product model software program 10 then uses its internal knowledge base of configuration dependent specification relationships and constraints to create a valid three-dimensional parametric model 20. This model contains information describing the number and types of spline teeth 32, snaps 34, and shoulder 36.
When you are analysing a spline coupling, the software program 10 will include default values for various specifications. The spline coupling model 20 comprises an internal spline 38 and an external spline 40. Each of the splines includes its own set of parameters, such as its depth, width, length, and radii. The external spline 40 will also contain its own set of parameters, such as its orientation.
Upon selecting these parameters, the software program will perform various analyses on the spline coupling model 20. The software program 10 calculates the nominal and maximal tooth bearing stresses and fatigue life of a spline coupling. It will also determine the difference in torsional windup between an internal and an external spline. The output file from the analysis will be a report file containing model configuration and specification data. The output file may also be used by other computer programs for further analysis.
Once these parameters are set, the user enters the design criteria for the spline coupling model 20. In this step, the user specifies the locations of maximum torque transfer for both the external and internal spline 38. The maximum torque transfer location depends on the configuration of the hardware attached to the shafts. The user may enter up to 4 different performance requirement specifications for each spline.
The results of the analysis show that there are 2 phases of spline coupling. The first phase shows a large increase in stress and vibration. The second phase shows a decline in both stress and vibration levels. The third stage shows a constant meshing force between 300N and 320N. This behavior continues for a longer period of time, until the final stage engages with the surface.
splineshaft

Misalignment of a spline coupling

A study aimed to investigate the position of the resultant contact force in a spline coupling engaging teeth under a steady torque and rotating misalignment. The study used numerical methods based on Finite Element Method (FEM) models. It produced numerical results for nominal conditions and parallel offset misalignment. The study considered 2 levels of misalignment – 0.02 mm and 0.08 mm – with different loading levels.
The results showed that the misalignment between the splines and rotors causes a change in the meshing force of the spline-rotor coupling system. Its dynamics is governed by the meshing force of splines. The meshing force of a misaligned spline coupling is related to the rotor-spline coupling system parameters, the transmitting torque, and the dynamic vibration displacement.
Despite the lack of precise measurements, the misalignment of splines is a common problem. This problem is compounded by the fact that splines usually feature backlash. This backlash is the result of the misaligned spline. The authors analyzed several splines, varying pitch diameters, and length/diameter ratios.
A spline coupling is a two-dimensional mechanical system, which has positive backlash. The spline coupling is comprised of a hub and shaft, and has tip-to-root clearances that are larger than the backlash. A form-clearance is sufficient to prevent tip-to-root fillet contact. The torque on the splines is transmitted via friction.
When a spline coupling is misaligned, a torque-biased thrust force is generated. In such a situation, the force can exceed the torque, causing the component to lose its alignment. The two-way transmission of torque and thrust is modeled analytically in the present study. The analytical approach provides solutions that can be integrated into the design process. So, the next time you are faced with a misaligned spline coupling problem, make sure to use an analytical approach!
In this study, the spline coupling is analyzed under nominal conditions without a parallel offset misalignment. The stiffness values obtained are the percentage difference between the nominal pitch diameter and load application diameter. Moreover, the maximum percentage difference in the measured pitch diameter is 1.60% under a torque of 5000 N*m. The other parameter, the pitch angle, is taken into consideration in the calculation.

China Standard Hot Sale Discount 50HP 70HP China Agricultural Machine Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe     near me manufacturer China Standard Hot Sale Discount 50HP 70HP China Agricultural Machine Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe     near me manufacturer

China factory Hot Sale Discount 70HP China Agricultural Machine Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe with Hot selling

Product Description

.

1. Our wheel tractors rank first in sales in China.

2. 20 years of export experience.

3. 30 years tractor production engineer.


 

Model                                 TK704
Machine parameters Type 4×4
Rated Traction( KN) 16.2
PTO Max Power (KW) 43.8
Dimensions(mm) 3560×1650×2350
Wheelbase(mm) 1965

Track(mm)

Front wheel(mm) 1150
Rear wheel(mm) 1200-1360
 Ground clearance(mm) Minimum ground clearance(mm) 330
  Use unilateral braking 2.85±0.20
  Not unilateral braking 3.15±0.30
Minimum use quality 1660
Gearbox 8F+8R Shuttle Shift
Steering System  hydraulic steering gear
Drive Train Clutch double acting clutch
Working equipment Maximum lifting force at 610mm(KN) ≥10
Suspension mechanism Three-piont suspension type 1
PTO shaft PTO Spedd(r/min) 540/760(option: 540/1000)
Tire Front wheel specifications 6.00-16/6.5-16/7.5-16
Rear wheel specifications 9.5-24/11.2-24/12.4-24
Engine Type Inline, 4 stroke, Water cooled
Cylinder 4

Optional

Cabin AC/Heater
Roll bar
Canopy

Perfusion volume

Radiater(L) 10
Fuel tank(L) 29
Engine oil pan(L) 5
Driveline oil (L) 20
Lifter(L) 9.5
This parameter table is for reference only, everything is based on actual products
 

50HP-70HP(8F+8R) Series Tractors
*Flat floor,8+8 shuttle shift,side-mounted gear,convenient and flexible operation, multiple gear selections, and strong adaptability.
*Fully sealed front axle, with good sealing performance, preventing mud and water ingress, both flood and drought. *Achieve a narrow wheelbase, adjustable from 0.96-1.2 meters, and a wider range of adaptation. *Double clutch,separate operation of driving and power output, more suitable for sowing and receiving use. *Rear-mounted, central-mounted cylinder front axle,the left and right turning radius are the same, flexible and convenient. *Standard configuration with 2 sets of 2 way valves to meet the needs of different agricultural machinery. *Optional air brake device to meet the needs of road transportation.

Engine
* 4 cylinder turbocharged diesel engine, Powerful and easy to maintain.
* Could choose china famous brand engine, Xichai, YTO, Xinchai etc.
* Low fuel consumption and large torque reserve.
* Cooling system effectively reduce engine temperature.

Cabin inside
* The 4-post cabin allows the driver to have a wider field of vision.
* Flat floor design is free and comfortable.
* Steering
wheel with direction ball makes it easier to operate.
* Shuttle shift makes forward and backward clear at a glance.
* Shock absorption seats, driving on bumpy roads will not have too much shock.

Lifter
* Hydraulic lifter, greater lifting force, the downward pressure is more powerful, which can better press agricultural machinery into the soil.
* 2 groups hydraulic output, can be connected to agricultural machinery using hydraulic oil.
* 3-point lift power 1050kg.
 

The Functions of Splined Shaft Bearings

Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.

Functions

Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.
splineshaft

Types

There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the 2 types of splines is the number of teeth on the shaft.
Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
splineshaft

Manufacturing methods

There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from 2 separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is 1 method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
Cold forming is 1 method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to 1 another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, 2 precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
splineshaft

Applications

The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These 3 factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.

China factory Hot Sale Discount 70HP China Agricultural Machine Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe     with Hot sellingChina factory Hot Sale Discount 70HP China Agricultural Machine Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe     with Hot selling