Tag Archives: machinery

China factory Zambia Hot Sale Farm Machinery Dq1504 150HP Yto Engine 4WD Agriculture Wheel Farming Tractor with Canopy wholesaler

Product Description

Zambia hot sale Farm machinery DQ1504 150HP YTO engine 4WD Agriculture wheel Farming Tractor with Canopy

Tractor Main Features and Advantages:

1.Equipped famous brand engine showing advanced capacity,low fuel consumption,high economic efficiency.
2. Streamlined appearance design, beautiful and generous.
3.Transmission Case adopt meshed shift and add the gearbox interlock device makes the operation more smoothly,reliable and easier.
4. Double action clutch with disc spring, perform steadily and easy to operate.
5. Fully hydraulic steering system greatly reduced driver’s work strength.
6. Wet disc brake device, reliable brake performance.
7. Separate injection of hydraulic oil, reliable to operate.
8. The lifter with force and position adjustment, with reliable lift.
9. Tractor PTO:
PTO in Double speed : 540/760r/min Optional, For high working efficiency.
PTO shaft of 6 or 8 spline Optional, adaptable for agricultural equipment of all over the world.
10. Big Chassis and Heavy-duty Rear axle for Durable Strong machine.
11. Full series light, ROPS,Sunshade/Canopy, Fan/Heater/Air-conditioned cabin are all available, for more comfortable driving environment. 

Tractor Main specificaiton and Technical parameters:

Model DQ1504
Drive type  4×4, 4WD wheel type
Engine
Engine brand and model YTO brand, diesel engine Model LR6M3Z-23
Type   In-line, direct injection,Water cooling, 4 stroke,6-cylinder
Aspiration way Turbo
Engine power at rated speed 110.3kw/150HP
Rated Power of PTO 94 KW
Max. traction Force (KN) 32.5
Displacement(L) 7.13
Compression ratio 18:1
Rated speed (r/min) 2300
Lowest fuel consumption (g/kw.h) ≤210
Cylinder·Bore·Stroke 6-110×125
Fuel tank capacity (L) 350
Muffler Dimension (Dia.×Length) (mm) φ600×295×140
Muffler weight (kg) 7.2
Steering type Full Hydraulic steering
Transmission
Clutch USA JpV brand, 13 inch dual-stage Clutch
PTO Speed (rpm) 540/1000
Gearshift 16F+8R
Speed range (km/h) F: 1.37-32.93 / R:2.09-30.63
Driving brake Wet, disk, hydro-static operate
Gearbox 4×2×(2+1)
Gearbox shifting way Joggle cover
Walking system
Frame type Frameless
Tyre size( front/rear) 14.9-26/18.4-38
Pressure( front/rear) (kPa) 157-196/150-200
Rim material 330CL
Working device
Lifter type Semi-detached model
Max. Lifting force (KN) 27
Suspension model Rear, three-point linkages
Suspension category  Category II or III
Adjusting control Position control, float control
Hydraulic pump type Gear pump CBN-E325L
Hydraulic output valve 3 Groups
P.T.O. type 1 type, rear
Spline no. of P.T.O. 6( standard), 8, 21
Diameter of spline 35
RPM 540/1000 or 760/1000
Technical parameter
Overall Dimension (LxWxH) (mm) 5240×2345×2995
Wheel base (mm) 2530/2657
Track base-Front /R(mm) 1650-2285 (1950 ex-work) /1620-2420 (1850 ex-work)
Track base adjusting way Limited/unlimited
Minimum ground clearance (mm)  520
Min. operational weight (kg) 4755
Front /Rear axle weight (kg) 2050/2705
Front Ballast 440kg (11 pcs, 40kg/pcs)
Rear Ballast 520kg (2 lays each side)
Covering Air-conditioning Cabin or Sunshade (Canopy)
Structure weight (kg) 5400(without cabin)/5780 (with cabin)

DQ1504 150HP 4WD Heavy duty big tractor showing:

DQ1504 150HP 4WD Tractor have Canpy(Sunshade) type and AC cabin type for choose:

Top-rank technical team and Advance R&D Center :

Advance Production workshop :

Strictly inspect for every set machine before Goods Delivery :

Company Honors and Certificates:

Personalized Packing and Transporting Service to meet different customers’ demand :

Perfect after-sale service for both Distributors and Private customers:


Please contact us if you have any demand for our Product  :

Best price will be quoted for you as soon as receive your Requirement !

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When 2 splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by 5 mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to 50-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows 4 concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these 3 components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using 2 different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these 2 methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the 3 factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China factory Zambia Hot Sale Farm Machinery Dq1504 150HP Yto Engine 4WD Agriculture Wheel Farming Tractor with Canopy     wholesaler China factory Zambia Hot Sale Farm Machinery Dq1504 150HP Yto Engine 4WD Agriculture Wheel Farming Tractor with Canopy     wholesaler

China Standard Industrial Cardan Shafts with Integral Face Pad Connection for Transmission Machinery with Good quality

Product Description

    Industrial Cardan Shafts With Integral Face Pad Connection For Transmission Machinery

Product Description
 

structure Universal Flexible or Rigid Rigid Standard or Nonstandard Nonstandard
Material Alloy steel Brand name HangZhou XIHU (WEST LAKE) DIS. Place of origin ZheJiang ,China
Model Medium Raw materials heat treatment Length based on requirement
Flange DIA / Nominal torque / coating heavy duty industrial paint
Paint clour Orange Application Power transmission OEM/ODM Available
Certification ISO,TUV,SGS Price calculate according to model Custom service Available

Packaging & Delivery

Packaging details:Standard plywood case

Delivery detail: 15 -20 working days,depend on the actual produce condition

 

FAQ

Q1: What is the location of your company?

A1: Our company is located in the HangZhou City ,ZheJiang ,China.Welcome to visit our factory at anytime!

 

Q2: How does your factory do regarding quality control?

A2: Our standard QC system to control quality.

 

Q3: What is your delivery time?

A3: Usually within 25 days after the receipt of payment.Delivery time must depend on the actual produce condition.

 

Q4: What are your strengths?

A4: 1.We are the manufacturer,having competitive advantage in price.

 

2.A large part of money is put into advancing CNC equipments and product

R&D department annual,the performance of cardan shaft can be guaranteed.

 

3.About quality issues or follow-up after-sales service,we report directly to the boss.

 

4.We have the ambitions to exploring and developing the world’s cardan shaft market and

we believe we can.

 

Standard Length Splined Shafts

Standard Length Splined Shafts are made from Mild Steel and are perfect for most repair jobs, custom machinery building, and many other applications. All stock splined shafts are 2-3/4 inches in length, and full splines are available in any length, with additional materials and working lengths available upon request and quotation. CZPT Manufacturing Company is proud to offer these standard length shafts.
splineshaft

Disc brake mounting interfaces that are splined

There are 2 common disc brake mounting interfaces, splined and center lock. Disc brakes with splined interfaces are more common. They are usually easier to install. The center lock system requires a tool to remove the locking ring on the disc hub. Six-bolt rotors are easier to install and require only 6 bolts. The center lock system is commonly used with performance road bikes.
Post mount disc brakes require a post mount adapter, while flat mount disc brakes do not. Post mount adapters are more common and are used for carbon mountain bikes, while flat mount interfaces are becoming the norm on road and gravel bikes. All disc brake adapters are adjustable for rotor size, though. Road bikes usually use 160mm rotors while mountain bikes use rotors that are 180mm or 200mm.
splineshaft

Disc brake mounting interfaces that are helical splined

A helical splined disc brake mounting interface is designed with a splined connection between the hub and brake disc. This splined connection allows for a relatively large amount of radial and rotational displacement between the disc and hub. A loosely splined interface can cause a rattling noise due to the movement of the disc in relation to the hub.
The splines on the brake disc and hub are connected via an air gap. The air gap helps reduce heat conduction from the brake disc to the hub. The present invention addresses problems of noise, heat, and retraction of brake discs at the release of the brake. It also addresses issues with skewing and dragging. If you’re unsure whether this type of mounting interface is right for you, consult your mechanic.
Disc brake mounting interfaces that are helix-splined may be used in conjunction with other components of a wheel. They are particularly useful in disc brake mounting interfaces for hub-to-hub assemblies. The spacer elements, which are preferably located circumferentially, provide substantially the same function no matter how the brake disc rotates. Preferably, 3 spacer elements are located around the brake disc. Each of these spacer elements has equal clearance between the splines of the brake disc and the hub.
Spacer elements 6 include a helical spring portion 6.1 and extensions in tangential directions that terminate in hooks 6.4. These hooks abut against the brake disc 1 in both directions. The helical spring portion 5.1 and 6.1 have stiffness enough to absorb radial impacts. The spacer elements are arranged around the circumference of the intermeshing zone.
A helical splined disc mount includes a stabilizing element formed as a helical spring. The helical spring extends to the disc’s splines and teeth. The ends of the extension extend in opposite directions, while brackets at each end engage with the disc’s splines and teeth. This stabilizing element is positioned axially over the disc’s width.
Helical splined disc brake mounting interfaces are popular in bicycles and road bicycles. They’re a reliable, durable way to mount your brakes. Splines are widely used in aerospace, and have a higher fatigue life and reliability. The interfaces between the splined disc brake and BB spindle are made from aluminum and acetate.
As the splined hub mounts the disc in a helical fashion, the spring wire and disc 2 will be positioned in close contact. As the spring wire contacts the disc, it creates friction forces that are evenly distributed throughout the disc. This allows for a wide range of axial motion. Disc brake mounting interfaces that are helical splined have higher strength and stiffness than their counterparts.
Disc brake mounting interfaces that are helically splined can have a wide range of splined surfaces. The splined surfaces are the most common type of disc brake mounting interfaces. They are typically made of stainless steel or aluminum and can be used for a variety of applications. However, a splined disc mount will not support a disc with an oversized brake caliper.

China Standard Industrial Cardan Shafts with Integral Face Pad Connection for Transmission Machinery     with Good qualityChina Standard Industrial Cardan Shafts with Integral Face Pad Connection for Transmission Machinery     with Good quality

China Best Sales OEM ODM Tractor Part Pto Drive Transmission Shaft for Agriculture Machinery with Good quality

Product Description

OEM ODM Transmission Shaft for Farm Machine and Agriculture Machine

1. Power or torque related to alternating load you require.  

2. Cross journal(Universal joint) size which decides torque of a PTO Shaft:  

3 Closed overall length (or cross to cross) of a PTO shaft.  

4 Tubes or Pipes  

FAQ

1. Q: Are your products forged or cast?

    A: All of our products are forged.

2. Q: Do you have a CE certificate?
    A: Yes, we are CE qualified.
3. Q: What’s the horse power of the pto shaft are available?
    A: We provide a full range of pto shaft, ranging from 16HP-200HP.
4. Q: How many splined specification do you have ?
    A: We produce 1 1/8″-Z6, 1 3/8″-Z6, 1 3/4″-Z6, 1 3/8″- Z21, 1 3/4″-Z20, 8X42X48X8 and 8X32X38X6 splines.
5. Q: How about the warranty?
    A: We guarantee 1 year warranty. With quality problems, we will send you the new products for free within next shipment.
6. Q: What’s your payment terms?
    A: T/T, L/C, D/A, D/P….
7. Q: What is the delivery time?
    A: 30 days after receiving your advanced deposit.
8. Q: What’s your MOQ?
    A: 50 PCS for each type.

Standard Length Splined Shafts

Standard Length Splined Shafts are made from Mild Steel and are perfect for most repair jobs, custom machinery building, and many other applications. All stock splined shafts are 2-3/4 inches in length, and full splines are available in any length, with additional materials and working lengths available upon request and quotation. CZPT Manufacturing Company is proud to offer these standard length shafts.
splineshaft

Disc brake mounting interfaces that are splined

There are 2 common disc brake mounting interfaces, splined and center lock. Disc brakes with splined interfaces are more common. They are usually easier to install. The center lock system requires a tool to remove the locking ring on the disc hub. Six-bolt rotors are easier to install and require only 6 bolts. The center lock system is commonly used with performance road bikes.
Post mount disc brakes require a post mount adapter, while flat mount disc brakes do not. Post mount adapters are more common and are used for carbon mountain bikes, while flat mount interfaces are becoming the norm on road and gravel bikes. All disc brake adapters are adjustable for rotor size, though. Road bikes usually use 160mm rotors while mountain bikes use rotors that are 180mm or 200mm.
splineshaft

Disc brake mounting interfaces that are helical splined

A helical splined disc brake mounting interface is designed with a splined connection between the hub and brake disc. This splined connection allows for a relatively large amount of radial and rotational displacement between the disc and hub. A loosely splined interface can cause a rattling noise due to the movement of the disc in relation to the hub.
The splines on the brake disc and hub are connected via an air gap. The air gap helps reduce heat conduction from the brake disc to the hub. The present invention addresses problems of noise, heat, and retraction of brake discs at the release of the brake. It also addresses issues with skewing and dragging. If you’re unsure whether this type of mounting interface is right for you, consult your mechanic.
Disc brake mounting interfaces that are helix-splined may be used in conjunction with other components of a wheel. They are particularly useful in disc brake mounting interfaces for hub-to-hub assemblies. The spacer elements, which are preferably located circumferentially, provide substantially the same function no matter how the brake disc rotates. Preferably, 3 spacer elements are located around the brake disc. Each of these spacer elements has equal clearance between the splines of the brake disc and the hub.
Spacer elements 6 include a helical spring portion 6.1 and extensions in tangential directions that terminate in hooks 6.4. These hooks abut against the brake disc 1 in both directions. The helical spring portion 5.1 and 6.1 have stiffness enough to absorb radial impacts. The spacer elements are arranged around the circumference of the intermeshing zone.
A helical splined disc mount includes a stabilizing element formed as a helical spring. The helical spring extends to the disc’s splines and teeth. The ends of the extension extend in opposite directions, while brackets at each end engage with the disc’s splines and teeth. This stabilizing element is positioned axially over the disc’s width.
Helical splined disc brake mounting interfaces are popular in bicycles and road bicycles. They’re a reliable, durable way to mount your brakes. Splines are widely used in aerospace, and have a higher fatigue life and reliability. The interfaces between the splined disc brake and BB spindle are made from aluminum and acetate.
As the splined hub mounts the disc in a helical fashion, the spring wire and disc 2 will be positioned in close contact. As the spring wire contacts the disc, it creates friction forces that are evenly distributed throughout the disc. This allows for a wide range of axial motion. Disc brake mounting interfaces that are helical splined have higher strength and stiffness than their counterparts.
Disc brake mounting interfaces that are helically splined can have a wide range of splined surfaces. The splined surfaces are the most common type of disc brake mounting interfaces. They are typically made of stainless steel or aluminum and can be used for a variety of applications. However, a splined disc mount will not support a disc with an oversized brake caliper.

China Best Sales OEM ODM Tractor Part Pto Drive Transmission Shaft for Agriculture Machinery     with Good qualityChina Best Sales OEM ODM Tractor Part Pto Drive Transmission Shaft for Agriculture Machinery     with Good quality

China Best Sales ISO Certificated Petroleum Machinery CZPT Joint Shaft of Audited Supplier near me shop

Product Description

ISO Certificated Petroleum Machinery Universal Joint Shaft of Audited Supplier

Product Description
 

structure universal Flexible or Rigid Rigid Standard or Nonstandard Nonstandard
Material Alloy steel Brand name HangZhou XIHU (WEST LAKE) DIS. Place of origin ZheJiang ,China
Model SWC Raw materials heat treatment Length depend on model
Flange DIA depend on model Nominal torque depend on model coating heavy duty industrial paint
Paint clour customization Application Oil drilling rig equipment OEM/ODM Available
Certification ISO,TUV,SGS Price calculate according to model Custom service Available

Packaging & Delivery

Packaging details:Standard plywood case

Delivery detail: 15 -20 working days,depend on the actual produce condition

FAQ

Q: Are you trading company or manufacturer ?
A: We  are  a  professional  manufacturer specializing  in  manufacturing cardan  shafts. We supply cardan shafts for the wholesalers , dealers  and end-users from different countries. 
 
Q: Can you do OEM? And what is your min order ?
A: Yes, absolutely. Generally, min order is1 set.  Most of our products are Customized. Each order from our factory, we always produce cardan shaft after customer confirmed the drawing. So we didn’t have stock.
 
Q: How does your factory do regarding quality control?
A:Quality is priority! We always attach great importance to quality controlling from the very beginning to the  end:
1) Firstly, we have QC department to control the quality
2) Secondly, we have all detailed records for nonconformity products, then we will make summary according to these records, avoid it happen again.
3) Thirdly,In order to meet world-class quality standards strict requirements, we passed the SGS, TUV product certification.
4)Fourthly,Have first-class production equipment, including CNC Machines and machining center.
 

 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China Best Sales ISO Certificated Petroleum Machinery CZPT Joint Shaft of Audited Supplier     near me shop China Best Sales ISO Certificated Petroleum Machinery CZPT Joint Shaft of Audited Supplier     near me shop

China Professional Tractor Parts Pto Drive Transmission Shaft/Propeller Shaft for Agriculture Machinery Ce Certificate near me factory

Product Description

OEM ODM Cardan Shaft for Farm Machine and Agriculture Machine

1. Power or torque related to alternating load you require.  

2. Cross journal(Universal joint) size which decides torque of a PTO Shaft:  

3 Closed overall length (or cross to cross) of a PTO shaft.  

4 Tubes or Pipes  

FAQ

1. Q: Are your products forged or cast?

    A: All of our products are forged.

2. Q: Do you have a CE certificate?
    A: Yes, we are CE qualified.
3. Q: What’s the horse power of the pto shaft are available?
    A: We provide a full range of pto shaft, ranging from 16HP-200HP.
4. Q: How many splined specification do you have ?
    A: We produce 1 1/8″-Z6, 1 3/8″-Z6, 1 3/4″-Z6, 1 3/8″- Z21, 1 3/4″-Z20, 8X42X48X8 and 8X32X38X6 splines.
5. Q: How about the warranty?
    A: We guarantee 1 year warranty. With quality problems, we will send you the new products for free within next shipment.
6. Q: What’s your payment terms?
    A: T/T, L/C, D/A, D/P….
7. Q: What is the delivery time?
    A: 30 days after receiving your advanced deposit.
8. Q: What’s your MOQ?
    A: 50 PCS for each type.

Types of Splines

There are 4 types of splines: Involute, Parallel key, helical, and ball. Learn about their characteristics. And, if you’re not sure what they are, you can always request a quotation. These splines are commonly used for building special machinery, repair jobs, and other applications. The CZPT Manufacturing Company manufactures these shafts. It is a specialty manufacturer and we welcome your business.
splineshaft

Involute splines

The involute spline provides a more rigid and durable structure, and is available in a variety of diameters and spline counts. Generally, steel, carbon steel, or titanium are used as raw materials. Other materials, such as carbon fiber, may be suitable. However, titanium can be difficult to produce, so some manufacturers make splines using other constituents.
When splines are used in shafts, they prevent parts from separating during operation. These features make them an ideal choice for securing mechanical assemblies. Splines with inward-curving grooves do not have sharp corners and are therefore less likely to break or separate while they are in operation. These properties help them to withstand high-speed operations, such as braking, accelerating, and reversing.
A male spline is fitted with an externally-oriented face, and a female spline is inserted through the center. The teeth of the male spline typically have chamfered tips to provide clearance with the transition area. The radii and width of the teeth of a male spline are typically larger than those of a female spline. These specifications are specified in ANSI or DIN design manuals.
The effective tooth thickness of a spline depends on the involute profile error and the lead error. Also, the spacing of the spline teeth and keyways can affect the effective tooth thickness. Involute splines in a splined shaft are designed so that at least 25 percent of the spline teeth engage during coupling, which results in a uniform distribution of load and wear on the spline.

Parallel key splines

A parallel splined shaft has a helix of equal-sized grooves around its circumference. These grooves are generally parallel or involute. Splines minimize stress concentrations in stationary joints and allow linear and rotary motion. Splines may be cut or cold-rolled. Cold-rolled splines have more strength than cut spines and are often used in applications that require high strength, accuracy, and a smooth surface.
A parallel key splined shaft features grooves and keys that are parallel to the axis of the shaft. This design is best suited for applications where load bearing is a primary concern and a smooth motion is needed. A parallel key splined shaft can be made from alloy steels, which are iron-based alloys that may also contain chromium, nickel, molybdenum, copper, or other alloying materials.
A splined shaft can be used to transmit torque and provide anti-rotation when operating as a linear guide. These shafts have square profiles that match up with grooves in a mating piece and transmit torque and rotation. They can also be easily changed in length, and are commonly used in aerospace. Its reliability and fatigue life make it an excellent choice for many applications.
The main difference between a parallel key splined shaft and a keyed shaft is that the former offers more flexibility. They lack slots, which reduce torque-transmitting capacity. Splines offer equal load distribution along the gear teeth, which translates into a longer fatigue life for the shaft. In agricultural applications, shaft life is essential. Agricultural equipment, for example, requires the ability to function at high speeds for extended periods of time.
splineshaft

Involute helical splines

Involute splines are a common design for splined shafts. They are the most commonly used type of splined shaft and feature equal spacing among their teeth. The teeth of this design are also shorter than those of the parallel spline shaft, reducing stress concentration. These splines can be used to transmit power to floating or permanently fixed gears, and reduce stress concentrations in the stationary joint. Involute splines are the most common type of splined shaft, and are widely used for a variety of applications in automotive, machine tools, and more.
Involute helical spline shafts are ideal for applications involving axial motion and rotation. They allow for face coupling engagement and disengagement. This design also allows for a larger diameter than a parallel spline shaft. The result is a highly efficient gearbox. Besides being durable, splines can also be used for other applications involving torque and energy transfer.
A new statistical model can be used to determine the number of teeth that engage for a given load. These splines are characterized by a tight fit at the major diameters, thereby transferring concentricity from the shaft to the female spline. A male spline has chamfered tips for clearance with the transition area. ANSI and DIN design manuals specify the different classes of fit.
The design of involute helical splines is similar to that of gears, and their ridges or teeth are matched with the corresponding grooves in a mating piece. It enables torque and rotation to be transferred to a mate piece while maintaining alignment of the 2 components. Different types of splines are used in different applications. Different splines can have different levels of tooth height.

Involute ball splines

When splines are used, they allow the shaft and hub to engage evenly over the shaft’s entire circumference. Because the teeth are evenly spaced, the load that they can transfer is uniform and their position is always the same regardless of shaft length. Whether the shaft is used to transmit torque or to transmit power, splines are a great choice. They provide maximum strength and allow for linear or rotary motion.
There are 3 basic types of splines: helical, crown, and ball. Crown splines feature equally spaced grooves. Crown splines feature involute sides and parallel sides. Helical splines use involute teeth and are often used in small diameter shafts. Ball splines contain a ball bearing inside the splined shaft to facilitate rotary motion and minimize stress concentration in stationary joints.
The 2 types of splines are classified under the ANSI classes of fit. Fillet root splines have teeth that mesh along the longitudinal axis of rotation. Flat root splines have similar teeth, but are intended to optimize strength for short-term use. Both types of splines are important for ensuring the shaft aligns properly and is not misaligned.
The friction coefficient of the hub is a complex process. When the hub is off-center, the center moves in predictable but irregular motion. Moreover, when the shaft is centered, the center may oscillate between being centered and being off-center. To compensate for this, the torque must be adequate to keep the shaft in its axis during all rotation angles. While straight-sided splines provide similar centering, they have lower misalignment load factors.
splineshaft

Keyed shafts

Essentially, splined shafts have teeth or ridges that fit together to transfer torque. Because splines are not as tall as involute gears, they offer uniform torque transfer. Additionally, they provide the opportunity for torque and rotational changes and improve wear resistance. In addition to their durability, splined shafts are popular in the aerospace industry and provide increased reliability and fatigue life.
Keyed shafts are available in different materials, lengths, and diameters. When used in high-power drive applications, they offer higher torque and rotational speeds. The higher torque they produce helps them deliver power to the gearbox. However, they are not as durable as splined shafts, which is why the latter is usually preferred in these applications. And while they’re more expensive, they’re equally effective when it comes to torque delivery.
Parallel keyed shafts have separate profiles and ridges and are used in applications requiring accuracy and precision. Keyed shafts with rolled splines are 35% stronger than cut splines and are used where precision is essential. These splines also have a smooth finish, which can make them a good choice for precision applications. They also work well with gears and other mechanical systems that require accurate torque transfer.
Carbon steel is another material used for splined shafts. Carbon steel is known for its malleability, and its shallow carbon content helps create reliable motion. However, if you’re looking for something more durable, consider ferrous steel. This type contains metals such as nickel, chromium, and molybdenum. And it’s important to remember that carbon steel is not the only material to consider.

China Professional Tractor Parts Pto Drive Transmission Shaft/Propeller Shaft for Agriculture Machinery Ce Certificate     near me factory China Professional Tractor Parts Pto Drive Transmission Shaft/Propeller Shaft for Agriculture Machinery Ce Certificate     near me factory

China wholesaler CONSTRUCTION MACHINERY PARTS 3066 C6 C6.4 318C 319C 320 TRANSMISSION FINAL DRIVE 1484636 PINION SHAFT near me manufacturer

Issue: New
Applicable Industries: Machinery Mend Outlets
Showroom Area: None
Video outgoing-inspection: Supplied
Machinery Test Report: Supplied
Advertising Variety: New Solution 2571
Guarantee: 6 Months
Following Warranty Services: Online help
Soon after-sales Support Offered: On the web help
Packaging Specifics: Picket Situation
Port: ZheJiang

Solution Overviews

Packaging & Gearbox assembly for Pesticide Sprayer Shipping
Trade Displays
Organization InformationO-Pressure is specialised in distributing building machinery and diesel engine components.O-Force has more than twenty several years of production and globally distribution experience. Our production foundation, 95.25×114.6×20 Large Good quality FKM Rubber Rear Gearbox Shaft Oil Seal fits China SINO Truck product sales headquarter and warehouse are found in HangZhou, axle travel shaft joint cv boot clamps Stainless Steel universal clamp ZheJiang , Foot Mounted Cycloidal Reducer Reduction Small Transmission Gearbox 501 Cycloidal Gearing Arrangement Equipment Reducer,Equipment Reducer and ZheJiang .O-Pressure is constantly fully commited to offering substantial-high quality merchandise and services. Expecting new cooperation with our companions and friends.

Why Checking the Generate Shaft is Critical

If you hear clicking noises even though driving, your driveshaft might require mend. An knowledgeable mechanic can notify if the sounds is coming from a single side or both sides. This dilemma is generally associated to the torque converter. Read through on to learn why it really is so crucial to have your driveshaft inspected by an automobile mechanic. Here are some symptoms to appear for. Clicking noises can be triggered by many different issues. You need to very first verify if the sounds is coming from the entrance or the rear of the motor vehicle.
air-compressor

hollow travel shaft

Hollow driveshafts have a lot of rewards. They are gentle and lessen the total fat of the car. The biggest maker of these elements in the planet is CZPT. They also offer light-weight answers for various apps, such as high-overall performance axles. CZPT driveshafts are produced employing point out-of-the-artwork technologies. They offer you superb good quality at aggressive rates.
The internal diameter of the hollow shaft reduces the magnitude of the internal forces, thereby reducing the sum of torque transmitted. As opposed to strong shafts, hollow shafts are receiving more powerful. The substance within the hollow shaft is slightly lighter, which additional lowers its bodyweight and overall torque. Nevertheless, this also increases its drag at large speeds. This means that in a lot of applications hollow driveshafts are not as efficient as strong driveshafts.
A traditional hollow drive shaft is made up of a first rod 14 and a second rod 14 on both sides. The very first rod is connected with the 2nd rod, and the 2nd rod extends in the rotation path. The two rods are then friction welded to the central area of ​​the hollow shaft. The frictional heat produced during the relative rotation helps to hook up the two parts. Hollow drive shafts can be used in interior combustion engines and environmentally-friendly automobiles.
The principal benefit of a hollow driveshaft is excess weight reduction. The splines of the hollow drive shaft can be developed to be more compact than the outside diameter of the hollow shaft, which can substantially minimize weight. Hollow shafts are also significantly less likely to jam in contrast to solid shafts. Hollow driveshafts are predicted to ultimately occupy the planet market place for automotive driveshafts. Its rewards include gas efficiency and higher flexibility compared to solid prop shafts.

Cardan shaft

Cardan shafts are a well-liked decision in industrial equipment. They are utilized to transmit power from 1 device to another and are obtainable in a range of measurements and styles. They are offered in a assortment of components, including steel, copper, and aluminum. If you prepare to put in 1 of these shafts, it is essential to know the different types of Cardan shafts available. To find the best choice, search the catalog.
Telescopic or “Cardan” prop shafts, also recognized as U-joints, are perfect for effective torque transfer amongst the generate and output method. They are productive, light-weight, and strength-efficient. They utilize sophisticated approaches, like finite element modeling (FEM), to ensure maximum efficiency, excess weight, and performance. Additionally, the Cardan shaft has an adjustable length for effortless repositioning.
An additional common option for driveshafts is the Cardan shaft, also recognized as a driveshaft. The purpose of the driveshaft is to transfer torque from the engine to the wheels. They are usually employed in high-functionality vehicle engines. Some kinds are manufactured of brass, iron, or steel and have special floor types. Cardan shafts are obtainable in inclined and parallel configurations.
Single Cardan shafts are a common replacement for common Cardan shafts, but if you are searching for dual Cardan shafts for your vehicle, you will want to choose the 1310 series. This variety is wonderful for lifted jeeps and demands a CV-suitable transfer situation. Some even call for axle spacers. The twin Cardan shafts are also made for lifts, which implies it’s a good option for boosting and lowering jeeps.
air-compressor

universal joint

Cardan joints are a good option for push shafts when running at a constant velocity. Their design and style enables a consistent angular velocity ratio in between the enter and output shafts. Based on the application, the recommended pace restrict could differ relying on the functioning angle, transmission power, and application. These recommendations need to be based mostly on pressure. The greatest permissible velocity of the push shaft is established by figuring out the angular acceleration.
Since gimbal joints do not demand grease, they can previous a long time but ultimately fall short. If they are improperly lubricated or dry, they can lead to metallic-to-metal speak to. The very same is real for U-joints that do not have oil filling capability. Whilst they have a prolonged lifespan, it can be hard to place warning symptoms that could reveal impending joint failure. To steer clear of this, verify the travel shaft frequently.
U-joints ought to not exceed seventy p.c of their lateral essential velocity. Nevertheless, if this velocity is exceeded, the part will experience unacceptable vibration, lowering its beneficial daily life. To figure out the very best U-joint for your software, remember to get in touch with your common joint supplier. Normally, reduce speeds do not call for balancing. In these circumstances, you need to think about using a larger pitch diameter to minimize axial drive.
To lessen the angular velocity and torque of the output shaft, the two joints have to be in stage. As a result, the output shaft angular displacement does not completely adhere to the input shaft. Rather, it will lead or lag. Figure 3 illustrates the angular velocity variation and peak displacement direct of the gimbal. The ratios are proven under. The right torque for this application is 1360 in-Ibs.

Refurbished push shaft

Refurbished driveshafts are a great decision for a quantity of reasons. They are cheaper than brand name new alternatives and usually just as trustworthy. Driveshafts are important to the function of any auto, truck, or bus. These parts are manufactured of hollow metallic tubes. While this aids lessen weight and expense, it is vulnerable to exterior influences. If this transpires, it might crack or bend. If the shaft suffers this type of damage, it can result in severe hurt to the transmission.
A car’s driveshaft is a critical component that transmits torque from the motor to the wheels. A1 Generate Shaft is a world-wide supplier of automotive driveshafts and associated factors. Their factory has the functionality to refurbish and repair almost any make or model of driveshafts. Refurbished driveshafts are offered for each and every make and model of motor vehicle. They can be located on the industry for a assortment of automobiles, which includes passenger vehicles, trucks, vans, and SUVs.
Abnormal noises indicate that your driveshaft demands to be replaced. Worn U-joints and bushings can trigger excessive vibration. These elements lead to dress in on other components of the drivetrain. If you notice any of these indicators, remember to take your motor vehicle to the AAMCO Bay Spot Middle for a comprehensive inspection. If you suspect harm to the driveshaft, do not wait one more moment – it can be quite dangerous.
air-compressor

The expense of changing the travel shaft

The expense of replacing a driveshaft differs, but on common, this repair expenses among $two hundred and $1,500. While this price might range by car, the value of elements and labor is usually equivalent. If you do the mend your self, you need to know how much the parts and labor will price before you start off function. Some parts can be more expensive than other people, so it really is a great thought to evaluate the cost of several places ahead of determining where to go.
If you notice any of these indicators, you ought to find a fix store right away. If you are nevertheless not confident if the driveshaft is damaged, do not generate the car any length till it is fixed. Indicators to appear for contain deficiency of electricity, problems moving the auto, squeaking, clanking, or vibrating when the car is moving.
Elements used in drive shafts contain middle support bearings, slip joints, and U-joints. The price tag of the driveshaft may differ by car and could vary by model of the identical year. Also, distinct kinds of driveshafts require different fix approaches and are much far more high-priced. All round, even though, a driveshaft substitution costs amongst $300 and $1,300. The approach may possibly consider about an hour, dependent on the automobile product.
Numerous elements can guide to the want to exchange the generate shaft, including bearing corrosion, destroyed seals, or other components. In some situations, the U-joint suggests that the travel shaft wants to be changed. Even if the bearings and u-joints are in good condition, they will at some point split and need the replacement of the generate shaft. Nonetheless, these components are not low cost, and if a broken driveshaft is a symptom of a larger problem, you should consider the time to exchange the shaft.

China wholesaler CONSTRUCTION MACHINERY PARTS 3066 C6 C6.4 318C 319C 320 TRANSMISSION Final Push 1484636 PINION SHAFT  close to me maker China wholesaler CONSTRUCTION MACHINERY PARTS 3066 C6 C6.4 318C 319C 320 TRANSMISSION Final Generate 1484636 PINION SHAFT  near me maker