Tag Archives: small agriculture machinery

China Custom Hot Sale 60HP 70HP China Agriculture Machinery Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe near me supplier

Product Description

.

1. Our wheel tractors rank first in sales in China.

2. 20 years of export experience.

3. 30 years tractor production engineer.


 

Model                                 TK704
Machine parameters Type 4×4
Rated Traction( KN) 16.2
PTO Max Power (KW) 43.8
Dimensions(mm) 3560×1650×2350
Wheelbase(mm) 1965

Track(mm)

Front wheel(mm) 1150
Rear wheel(mm) 1200-1360
 Ground clearance(mm) Minimum ground clearance(mm) 330
  Use unilateral braking 2.85±0.20
  Not unilateral braking 3.15±0.30
Minimum use quality 1660
Gearbox 8F+8R Shuttle Shift
Steering System  hydraulic steering gear
Drive Train Clutch double acting clutch
Working equipment Maximum lifting force at 610mm(KN) ≥10
Suspension mechanism Three-piont suspension type 1
PTO shaft PTO Spedd(r/min) 540/760(option: 540/1000)
Tire Front wheel specifications 6.00-16/6.5-16/7.5-16
Rear wheel specifications 9.5-24/11.2-24/12.4-24
Engine Type Inline, 4 stroke, Water cooled
Cylinder 4

Optional

Cabin AC/Heater
Roll bar
Canopy

Perfusion volume

Radiater(L) 10
Fuel tank(L) 29
Engine oil pan(L) 5
Driveline oil (L) 20
Lifter(L) 9.5
This parameter table is for reference only, everything is based on actual products
 

50HP-70HP(8F+8R) Series Tractors
*Flat floor,8+8 shuttle shift,side-mounted gear,convenient and flexible operation, multiple gear selections, and strong adaptability.
*Fully sealed front axle, with good sealing performance, preventing mud and water ingress, both flood and drought. *Achieve a narrow wheelbase, adjustable from 0.96-1.2 meters, and a wider range of adaptation. *Double clutch,separate operation of driving and power output, more suitable for sowing and receiving use. *Rear-mounted, central-mounted cylinder front axle,the left and right turning radius are the same, flexible and convenient. *Standard configuration with 2 sets of 2 way valves to meet the needs of different agricultural machinery. *Optional air brake device to meet the needs of road transportation.

Engine
* 4 cylinder turbocharged diesel engine, Powerful and easy to maintain.
* Could choose china famous brand engine, Xichai, YTO, Xinchai etc.
* Low fuel consumption and large torque reserve.
* Cooling system effectively reduce engine temperature.

Cabin inside
* The 4-post cabin allows the driver to have a wider field of vision.
* Flat floor design is free and comfortable.
* Steering
wheel with direction ball makes it easier to operate.
* Shuttle shift makes forward and backward clear at a glance.
* Shock absorption seats, driving on bumpy roads will not have too much shock.

Lifter
* Hydraulic lifter, greater lifting force, the downward pressure is more powerful, which can better press agricultural machinery into the soil.
* 2 groups hydraulic output, can be connected to agricultural machinery using hydraulic oil.
* 3-point lift power 1050kg.
 

The Benefits of Spline Couplings for Disc Brake Mounting Interfaces

Spline couplings are commonly used for securing disc brake mounting interfaces. Spline couplings are often used in high-performance vehicles, aeronautics, and many other applications. However, the mechanical benefits of splines are not immediately obvious. Listed below are the benefits of spline couplings. We’ll discuss what these advantages mean for you. Read on to discover how these couplings work.

Disc brake mounting interfaces are splined

There are 2 common disc brake mounting interfaces – splined and six-bolt. Splined rotors fit on splined hubs; six-bolt rotors will need an adapter to fit on six-bolt hubs. The six-bolt method is easier to maintain and may be preferred by many cyclists. If you’re thinking of installing a disc brake system, it is important to know how to choose the right splined and center lock interfaces.
splineshaft

Aerospace applications

The splines used for spline coupling in aircraft are highly complex. While some previous researches have addressed the design of splines, few publications have tackled the problem of misaligned spline coupling. Nevertheless, the accurate results we obtained were obtained using dedicated simulation tools, which are not commercially available. Nevertheless, such tools can provide a useful reference for our approach. It would be beneficial if designers could use simple tools for evaluating contact pressure peaks. Our analytical approach makes it possible to find answers to such questions.
The design of a spline coupling for aerospace applications must be accurate to minimize weight and prevent failure mechanisms. In addition to weight reduction, it is necessary to minimize fretting fatigue. The pressure distribution on the spline coupling teeth is a significant factor in determining its fretting fatigue. Therefore, we use analytical and experimental methods to examine the contact pressure distribution in the axial direction of spline couplings.
The teeth of a spline coupling can be categorized by the type of engagement they provide. This study investigates the position of resultant contact forces in the teeth of a spline coupling when applied to pitch diameter. Using FEM models, numerical results are generated for nominal and parallel offset misalignments. The axial tooth profile determines the behavior of the coupling component and its ability to resist wear. Angular misalignment is also a concern, causing misalignment.
In order to assess wear damage of a spline coupling, we must take into consideration the impact of fretting on the components. This wear is caused by relative motion between the teeth that engage them. The misalignment may be caused by vibrations, cyclical tooth deflection, or angular misalignment. The result of this analysis may help designers improve their spline coupling designs and develop improved performance.
CZPT polyimide, an abrasion-resistant polymer, is a popular choice for high-temperature spline couplings. This material reduces friction and wear, provides a low friction surface, and has a low wear rate. Furthermore, it offers up to 50 times the life of metal on metal spline connections. For these reasons, it is important to choose the right material for your spline coupling.
splineshaft

High-performance vehicles

A spline coupler is a device used to connect splined shafts. A typical spline coupler resembles a short pipe with splines on either end. There are 2 basic types of spline coupling: single and dual spline. One type attaches to a drive shaft, while the other attaches to the gearbox. While spline couplings are typically used in racing, they’re also used for performance problems.
The key challenge in spline couplings is to determine the optimal dimension of spline joints. This is difficult because no commercial codes allow the simulation of misaligned joints, which can destroy components. This article presents analytical approaches to estimating contact pressures in spline connections. The results are comparable with numerical approaches but require special codes to accurately model the coupling operation. This research highlights several important issues and aims to make the application of spline couplings in high-performance vehicles easier.
The stiffness of spline assemblies can be calculated using tooth-like structures. Such splines can be incorporated into the spline joint to produce global stiffness for torsional vibration analysis. Bearing reactions are calculated for a certain level of misalignment. This information can be used to design bearing dimensions and correct misalignment. There are 3 types of spline couplings.
Major diameter fit splines are made with tightly controlled outside diameters. This close fit provides concentricity transfer from the male to the female spline. The teeth of the male spline usually have chamfered tips and clearance with fillet radii. These splines are often manufactured from billet steel or aluminum. These materials are renowned for their strength and uniform grain created by the forging process. ANSI and DIN design manuals define classes of fit.
splineshaft

Disc brake mounting interfaces

A spline coupling for disc brake mounting interfaces is a type of hub-to-brake-disc mount. It is a highly durable coupling mechanism that reduces heat transfer from the disc to the axle hub. The mounting arrangement also isolates the axle hub from direct contact with the disc. It is also designed to minimize the amount of vehicle downtime and maintenance required to maintain proper alignment.
Disc brakes typically have substantial metal-to-metal contact with axle hub splines. The discs are held in place on the hub by intermediate inserts. This metal-to-metal contact also aids in the transfer of brake heat from the brake disc to the axle hub. Spline coupling for disc brake mounting interfaces comprises a mounting ring that is either a threaded or non-threaded spline.
During drag brake experiments, perforated friction blocks filled with various additive materials are introduced. The materials included include Cu-based powder metallurgy material, a composite material, and a Mn-Cu damping alloy. The filling material affects the braking interface’s wear behavior and friction-induced vibration characteristics. Different filling materials produce different types of wear debris and have different wear evolutions. They also differ in their surface morphology.
Disc brake couplings are usually made of 2 different types. The plain and HD versions are interchangeable. The plain version is the simplest to install, while the HD version has multiple components. The two-piece couplings are often installed at the same time, but with different mounting interfaces. You should make sure to purchase the appropriate coupling for your vehicle. These interfaces are a vital component of your vehicle and must be installed correctly for proper operation.
Disc brakes use disc-to-hub elements that help locate the forces and displace them to the rim. These elements are typically made of stainless steel, which increases the cost of manufacturing the disc brake mounting interface. Despite their benefits, however, the high braking force loads they endure are hard on the materials. Moreover, excessive heat transferred to the intermediate elements can adversely affect the fatigue life and long-term strength of the brake system.

China Custom Hot Sale 60HP 70HP China Agriculture Machinery Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe     near me supplier China Custom Hot Sale 60HP 70HP China Agriculture Machinery Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe     near me supplier

China Professional Hot Sale Discount 50HP 70HP China Agriculture Machinery Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe with Great quality

Product Description

.

1. Our wheel tractors rank first in sales in China.

2. 20 years of export experience.

3. 30 years tractor production engineer.


 

Model                                 TK704
Machine parameters Type 4×4
Rated Traction( KN) 16.2
PTO Max Power (KW) 43.8
Dimensions(mm) 3560×1650×2350
Wheelbase(mm) 1965

Track(mm)

Front wheel(mm) 1150
Rear wheel(mm) 1200-1360
 Ground clearance(mm) Minimum ground clearance(mm) 330
  Use unilateral braking 2.85±0.20
  Not unilateral braking 3.15±0.30
Minimum use quality 1660
Gearbox 8F+8R Shuttle Shift
Steering System  hydraulic steering gear
Drive Train Clutch double acting clutch
Working equipment Maximum lifting force at 610mm(KN) ≥10
Suspension mechanism Three-piont suspension type 1
PTO shaft PTO Spedd(r/min) 540/760(option: 540/1000)
Tire Front wheel specifications 6.00-16/6.5-16/7.5-16
Rear wheel specifications 9.5-24/11.2-24/12.4-24
Engine Type Inline, 4 stroke, Water cooled
Cylinder 4

Optional

Cabin AC/Heater
Roll bar
Canopy

Perfusion volume

Radiater(L) 10
Fuel tank(L) 29
Engine oil pan(L) 5
Driveline oil (L) 20
Lifter(L) 9.5
This parameter table is for reference only, everything is based on actual products
 

50HP-70HP(8F+8R) Series Tractors
*Flat floor,8+8 shuttle shift,side-mounted gear,convenient and flexible operation, multiple gear selections, and strong adaptability.
*Fully sealed front axle, with good sealing performance, preventing mud and water ingress, both flood and drought. *Achieve a narrow wheelbase, adjustable from 0.96-1.2 meters, and a wider range of adaptation. *Double clutch,separate operation of driving and power output, more suitable for sowing and receiving use. *Rear-mounted, central-mounted cylinder front axle,the left and right turning radius are the same, flexible and convenient. *Standard configuration with 2 sets of 2 way valves to meet the needs of different agricultural machinery. *Optional air brake device to meet the needs of road transportation.

Engine
* 4 cylinder turbocharged diesel engine, Powerful and easy to maintain.
* Could choose china famous brand engine, Xichai, YTO, Xinchai etc.
* Low fuel consumption and large torque reserve.
* Cooling system effectively reduce engine temperature.

Cabin inside
* The 4-post cabin allows the driver to have a wider field of vision.
* Flat floor design is free and comfortable.
* Steering
wheel with direction ball makes it easier to operate.
* Shuttle shift makes forward and backward clear at a glance.
* Shock absorption seats, driving on bumpy roads will not have too much shock.

Lifter
* Hydraulic lifter, greater lifting force, the downward pressure is more powerful, which can better press agricultural machinery into the soil.
* 2 groups hydraulic output, can be connected to agricultural machinery using hydraulic oil.
* 3-point lift power 1050kg.
 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China Professional Hot Sale Discount 50HP 70HP China Agriculture Machinery Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe     with Great qualityChina Professional Hot Sale Discount 50HP 70HP China Agriculture Machinery Manufacturer 4WD Small Compact Garden Cheap Wheel Mini Farm Tractor with Front End Loader and Backhoe     with Great quality